Full Content is available to subscribers

Subscribe/Learn More  >

Blunt Crack Initiation and its Transition to Sharp Cracks in Pipeline Steel in Near-Neutral pH Solution

[+] Author Affiliations
B. Fang

RAE Engineering and Inspection Ltd., Calgary, AB, CanadaChinese Academy of Sciences, Shenyang, China

R. L. Eadie

University of Alberta, Edmonton, AB, Canada

M. Elboujdaini

CANMET Materials Technology Laboratory, Ottawa, ON, Canada

Paper No. IPC2012-90088, pp. 325-334; 10 pages
  • 2012 9th International Pipeline Conference
  • Volume 2: Pipeline Integrity Management
  • Calgary, Alberta, Canada, September 24–28, 2012
  • Conference Sponsors: International Petroleum Technology Institute, Pipeline Division
  • ISBN: 978-0-7918-4513-4
  • Copyright © 2012 by ASME


This paper reviews our research into pipeline stress corrosion cracking (SCC) in near-neutral pH (NNpH) environment to help understand the mechanisms on pit-to-crack transition and early growth to contribute to pipeline integrity management so that the risk of failure can be avoid or reduced.

Pitted specimens by using two different techniques (passivation/immersion and electrochemical methods) were cyclically loaded in NNpH environment sparged with 5% CO2 / balance N2 gas mixture at high stress ratios (minimum stress/maximum stress), low strain rates and low frequencies which are close to the operational pipelines in the field. Blunt cracks initiation was seen first and associated with the pit geometry, and most of the blunt cracks were observed to have initiated from the corrosion pits that had the pit depth to surface width aspect ratios greater than 0.5. The blunt crack growth was engendered by anodic dissolution, which was facilitated by stress. So it was called as stress facilitated dissolution crack growth. These blunt cracks had considerably large crack tip width to crack mouth width aspect ratios, and the majority were below 0.5 to 0.6 mm deep, and considered dormant. Once cracks surpassed the critical value, around 0.5 to 0.6 mm, the cracks would be reactivated and the crack tip width to crack mouth width ratios became significantly smaller. Meanwhile, more hydrogen would be trapped in the plastic zones. Thus, hydrogen would play an important role in the crack propagation. So in this stage, cracks tended to become sharp and the mechanism was referred to hydrogen facilitated cracking. The observations from the field can be interpreted very well by using the proposed models. It was proposed that two different mechanisms are responsible for the early-stage crack growth and sharp cracks be removed to reduce the risk of failure in pipelines.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In