0

Full Content is available to subscribers

Subscribe/Learn More  >

Research on Infrared Laser Leak Detection for Natural Gas Pipeline

[+] Author Affiliations
Bin Xu, Dongliang Yu, Jiayong Wu, Hongchao Wang, Dongjie Tan, Likun Wang

PetroChina Pipeline Company, Langfang, Hebei, China

Paper No. IPC2012-90082, pp. 711-715; 5 pages
doi:10.1115/IPC2012-90082
From:
  • 2012 9th International Pipeline Conference
  • Volume 1: Upstream Pipelines; Project Management; Design and Construction; Environment; Facilities Integrity Management; Operations and Maintenance; Pipeline Automation and Measurement
  • Calgary, Alberta, Canada, September 24–28, 2012
  • Conference Sponsors: International Petroleum Technology Institute, Pipeline Division
  • ISBN: 978-0-7918-4512-7
  • Copyright © 2012 by ASME

abstract

An airborne infrared laser leak detection technology is proposed to detect natural gas pipeline leakage by helicopter which carrying a detector that can detect a high spatial resolution of trace of methane on the ground. The principle of the airborne infrared laser leak detection system is based on tunable diode laser absorption spectroscopy. The system consists of an optical unit including the laser, camera, helicopter mount, electronic unit with GPS receiver, a notebook computer and a pilot monitor. And the system is mounted on a helicopter. The principle and the architecture of the airborne infrared laser leak detection system are presented. Field test experiments are carried out on West-East Natural Gas Pipeline of China, and the results show that the airborne laser leak detection method is suitable for detecting gas leak of pipeline on plain, desert and hills but unfit for the area with large altitude diversification.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In