0

Full Content is available to subscribers

Subscribe/Learn More  >

The Effects of Temper Bead Welding Technique on Weld Integrity for In-Service Welding of Carbon Steels

[+] Author Affiliations
K. Meszaros, J. Pepin, M. Yarmuch

Alberta Innovates – Technology Futures, Devon, AB, Canada

C. Vrolyk, T. Mah-Paulson

T. D. Williamson Canada ULC, Edmonton, AB, Canada

Paper No. IPC2012-90242, pp. 563-570; 8 pages
doi:10.1115/IPC2012-90242
From:
  • 2012 9th International Pipeline Conference
  • Volume 1: Upstream Pipelines; Project Management; Design and Construction; Environment; Facilities Integrity Management; Operations and Maintenance; Pipeline Automation and Measurement
  • Calgary, Alberta, Canada, September 24–28, 2012
  • Conference Sponsors: International Petroleum Technology Institute, Pipeline Division
  • ISBN: 978-0-7918-4512-7
  • Copyright © 2012 by ASME

abstract

The maintenance of pipeline infrastructure is a significant integrity consideration for the pipeline industry. Employing traditional repair techniques, whereby to conduct repairs when the pipeline is shut-down and drained, can result in significant losses to revenue and production. There is industry demand for repair techniques that allow both scheduled and emergency ‘in-service’ weld repair techniques to be developed. As a result, in-service welding with the temper bead technique is becoming increasingly common for repair operations.

During in-service welding, the two most prevalent metallurgical concerns are burn-through and hydrogen induced cracking (HIC). The risk of burn-through can be limited through appropriate welding parameter and heat input control during welding. The temper bead welding technique utilizes special bead placement to ensure appropriate heat flow throughout the weld zone to metallurgically improve resistance to HIC.

In this study, a series of shielded metal arc welding (SMAW) coupons were produced on 0.250″ thick carbon steel plates subjected to water-cooling. Single and double-layer deposits were made. The second layer tempering bead heat input was purposely varied from plate to plate. The first layer of the welds were all performed using similar welding parameters, so the “tempering” effect from the second weld layer on the metallurgical properties of the resultant welds could be examined. To further expand the understanding of important procedural variables for in-service welding applications, this study investigates the effect of welder technique on the weldment properties achieved during temper bead welding.

Copyright © 2012 by ASME
Topics: Welding , Carbon steel

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In