0

Full Content is available to subscribers

Subscribe/Learn More  >

A Method to Determine the Safe Time for High Waxy Crude Pipeline With Uncertainty

[+] Author Affiliations
Bo Xu, Qing Miao, Hao Lan, Feng Yan, Donglei Liu

PetroChina Pipeline Research & Development Center, Langfang, China

Paper No. IPC2012-90119, pp. 467-473; 7 pages
doi:10.1115/IPC2012-90119
From:
  • 2012 9th International Pipeline Conference
  • Volume 1: Upstream Pipelines; Project Management; Design and Construction; Environment; Facilities Integrity Management; Operations and Maintenance; Pipeline Automation and Measurement
  • Calgary, Alberta, Canada, September 24–28, 2012
  • Conference Sponsors: International Petroleum Technology Institute, Pipeline Division
  • ISBN: 978-0-7918-4512-7
  • Copyright © 2012 by ASME

abstract

More than 80% crude oils produced in China has a high content of wax. Pipeline transportation for such high waxy Chinese crude has a serious safety risk due to its characteristics of high gel point (up to 30 degree) and high viscosity below the wax appearance temperature. In the case of pipeline shutdown the crude cools down. After a certain amount of time, depending on the crude oil properties, the crude oil temperature plot file, the hydraulic data as well as the pipeline construction and environmental related data, the required pressure to restart the pipeline might exceed the maximum allowable operation pressure (MAOP) which makes the restart of operation become very difficult or even impossible.

To mitigate the safety risk in case of the pipeline shutdown or to avoid congeal accident, determining the safe time after which the pipeline is still able to restart is necessary. However, the complexity of the presented problem lies in the uncertainty of the operation parameters and the environmental related data, such as the uncertainly of the flow rate and natural temperature.

A method is developed to predict the safe time based on the uncertainty of parameters. In the method, the field data is firstly collected, then processed and analyzed to obtain the static rules of these data. By doing so, the complexity of uncertainty is successfully handled. The method is then applied to two pipelines, the results show that the safety of the pipeline is ensured and the energy consumption is also significantly reduced.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In