0

Full Content is available to subscribers

Subscribe/Learn More  >

Technology and Contribution of SUMEBore Cylinder Liner Surface Coatings on Lubricant Oil Consumption Reduction on an EMD710 Diesel Engine

[+] Author Affiliations
Peter Ernst

Sulzer Metco AG, Wohlen, Switzerland

Jaime de Jesus Garcia Villarreal

GE Transportation, Erie, PA

Kent Froelund

Da Vinci Emissions Services, Ltd., San Antonio, TX

Paper No. ICEF2012-92083, pp. 907-914; 8 pages
doi:10.1115/ICEF2012-92083
From:
  • ASME 2012 Internal Combustion Engine Division Fall Technical Conference
  • ASME 2012 Internal Combustion Engine Division Fall Technical Conference
  • Vancouver, BC, Canada, September 23–26, 2012
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5509-6
  • Copyright © 2012 by ASME

abstract

Rising fuel prices and more stringent requirements in the field of emissions such as nitrogen oxides, particulate matter and carbon dioxide are increasing the pressure on the engine manufacturers to utilize technologies that contribute to a reduction in these emissions. As a result, interest in cylinder surface coatings has risen considerably in the last three to four years, and particularly in the SUMEBore® coating solution from Sulzer Metco. Such coatings are applied by a powder-based atmospheric plasma spray process (APS). The APS method is very flexible and can also process materials to which wire-based methods do not have access, particularly high chromium containing steels, metal matrix composites (MMCs) and pure ceramics. The compositions can be tailored to the specific challenges in an engine, e.g. excessive abrasive wear, scuffing or corrosion caused by adulterated fuels and/or high exhaust gas recirculation rates (EGR). Over the past four to five years cylinder liner surfaces from trucks, diesel locomotives, marine and gas engines, for power generation and gas compression have been coated with such materials. These engines have been tested successfully. Most of the tested engines achieved significant reductions of lubrication oil consumption (LOC), sometimes in excess of 75%, reduced fuel consumption, very low wear rates and corrosion resistance on the liner surfaces. As an example the paper will highlight the coating of cylinder surfaces in a 4,000 hp EMD 16-710G3 locomotive diesel engine. Details of the application of a corrosion resistant MMC will be shown, together with results obtained with the Da Vinci DALOC measurement technique in an engine test where the lubricant oil consumption was accurately quantified at 4 steady-state operating conditions typical of North American freight locomotive and which clearly showed the significant contribution of the liner ID coating to reduction of lubricant oil consumption (LOC).

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In