Full Content is available to subscribers

Subscribe/Learn More  >

Understanding Loss Mechanisms and Identifying Areas of Improvement for HCCI Engines Using Detailed Exergy Analysis

[+] Author Affiliations
Samveg Saxena, Nihar Shah, Amol Phadke

Lawrence Berkeley National Laboratory, Berkeley, CA

Iván Dario Bedoya

University of Antioquia, Medellin, Colombia

Paper No. ICEF2012-92052, pp. 723-736; 14 pages
  • ASME 2012 Internal Combustion Engine Division Fall Technical Conference
  • ASME 2012 Internal Combustion Engine Division Fall Technical Conference
  • Vancouver, BC, Canada, September 23–26, 2012
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5509-6
  • Copyright © 2012 by ASME


This paper presents a detailed exergy analysis of homogeneous charge compression ignition (HCCI) engines, including a crank-angle resolved breakdown of mixture exergy and exergy destruction. Exergy analysis is applied to a multi-zone HCCI simulation including detailed chemical kinetics. The HCCI simulation is validated against engine experiments for ethanol-fueled operation. The exergy analysis quantifies the relative importance of different loss mechanisms within HCCI engines over a range of engine operating conditions. Specifically, four loss mechanisms are studied for their relative impact on exergy losses, including 1) the irreversible combustion process (16.4–21.5%), 2) physical exergy lost to exhaust gases (12.0–18.7%), 3) heat losses (3.9–17.1%), and 4) chemical exergy lost to incomplete combustion (4.7–37.8%). The trends in each loss mechanism are studied in relation to changes in intake pressure, equivalence ratio, and engine speed as these parameters are directly used to vary engine power output. This exergy analysis methodology is proposed as a tool to inform research and design processes, particularly by identifying the relative importance of each loss mechanism in determining engine operating efficiency.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In