0

Full Content is available to subscribers

Subscribe/Learn More  >

Bending Analysis of Textured Polycrystalline Shape Memory Alloy Beams

[+] Author Affiliations
Reza Mirzaeifar, Reginald DesRoches, Arash Yavari, Ken Gall

Georgia Institute of Technology, Atlanta, GA

Paper No. SMASIS2012-8008, pp. 117-124; 8 pages
doi:10.1115/SMASIS2012-8008
From:
  • ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Bio-Inspired Materials and Systems; Energy Harvesting
  • Stone Mountain, Georgia, USA, September 19–21, 2012
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4510-3
  • Copyright © 2012 by ASME

abstract

In this paper a micro-mechanical model that incorporates single crystal constitutive relationships is used for studying the pseudoelastic response of polycrystalline shape memory alloy beams subjected to bending. In the micro-mechanical framework, the stress-free transformation strains of all the 24 correspondence variant pairs (CVPs) obtained from the crystallographic data of NiTi are used, and the overall transformation strain is obtained by defining a set of martensitic volume fractions corresponding to active CVPs during a phase transformation. A three-dimensional finite element model is used and a polycrystalline beam is modeled based on Voronoi tessellations. The effect of crystallographic texture and the tension-compression asymmetry on the bending response of superelastic beams is studied. The results of texture measurements are used to assign appropriate crystal orientations to the grains in the model. By considering various combinations of crystal orientations, the effect of preferred crystallographic texture on the bending response is studied. The size effect is also studied by considering two polycrystal structures with different number of grains.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In