0

Full Content is available to subscribers

Subscribe/Learn More  >

Simulation of Interaction Between Lamb Waves and Cracks for Structural Health Monitoring With Piezoelectric Wafer Active Sensors

[+] Author Affiliations
Yanfeng Shen, Victor Giurgiutiu

University of South Carolina, Columbia, SC

Paper No. SMASIS2012-7917, pp. 615-623; 9 pages
doi:10.1115/SMASIS2012-7917
From:
  • ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Structural Health Monitoring
  • Stone Mountain, Georgia, USA, September 19–21, 2012
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4509-7
  • Copyright © 2012 by ASME

abstract

In this paper, the detection for two kinds of cracks is studied: (1) linear notch crack; (2) nonlinear breathing crack. A pitch-catch method with piezoelectric wafer actives sensors (PWAS) is used to interrogate an aluminum plate with a linear notch crack and a nonlinear breathing crack respectively as two cases. The inspection Lamb waves generated by the transmitter PWAS, propagate into the structure, interact with the crack, acquire crack information and are picked up by the receiver PWAS. The linear notch crack case is investigated through: (1) analytical model developed for Lamb waves interacting with a general linear damage; (2) finite element simulation. The breathing crack, which acts as a nonlinear source, is simulated using two approaches: (1) element activation/deactivation technique; (2) contact model. The theory and solving scheme of the proposed element activation/deactivation approach is discussed in detail. The signal features of different damage severities are analyzed. Crack opening, closing, stress concentration, surface collision phenomena are noticed for the breathing cracks. Mode conversion is noticed for both crack cases. The generation mechanism and mode components of the new wave packets are investigated by studying the particle motion through the plate thickness. A damage index is proposed based on the spectral amplitude ratio between the second harmonic and the excitation frequency for the breathing crack. The damage index is found capable of estimating the presence and severity of the breathing crack. The paper finishes with summary and conclusions.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In