0

Full Content is available to subscribers

Subscribe/Learn More  >

Electron-Phonon Coupled Two-Dimensional Heat Transfer in Nanoscale Metal/Dielectric Multilayers

[+] Author Affiliations
Zijian Li, Si Tan, Takashi Kodama, Elah Bozorg-Grayeli, Mehdi Asheghi, Kenneth E. Goodson

Stanford University, Stanford, CA

Paper No. HT2012-58350, pp. 579-587; 9 pages
doi:10.1115/HT2012-58350
From:
  • ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 1: Heat Transfer in Energy Systems; Theory and Fundamental Research; Aerospace Heat Transfer; Gas Turbine Heat Transfer; Transport Phenomena in Materials Processing and Manufacturing; Heat and Mass Transfer in Biotechnology; Environmental Heat Transfer; Visualization of Heat Transfer; Education and Future Directions in Heat Transfer
  • Rio Grande, Puerto Rico, USA, July 8–12, 2012
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4477-9
  • Copyright © 2012 by ASME

abstract

Heat transfer across nanoscale metal/dielectric multilayers involves multiple thermal conduction mechanisms. Electron or phonon interface scattering can augment the thermal conductivity anisotropy in multilayer composites. Weak electron-phonon coupling and quasi-ballistic phonon transport normal to the metal film further increase the anisotropy for metal-dielectric multilayers with period shorter than the relevant free paths. This paper models these physical mechanisms using an approximate thermal resistor network with support from the Boltzmann transport equation. We measure the in- and cross-plane thermal conductivity of a Mo/Si (2.8 nm/4.1 nm) multilayer as 15.4 and 1.2 W/mK, respectively, which agree with the proposed theoretical model. This work introduces a criterion for the transition from electron to phonon dominated heat conduction in metal films bounded by dielectrics.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In