0

Full Content is available to subscribers

Subscribe/Learn More  >

A Study of Cavitation Flow in a Centrifugal Pump at Part Load Conditions Based on Numerical Analysis

[+] Author Affiliations
Jianping Yuan, Yanxia Fu, Shouqi Yuan

Jiangsu University, Zhenjiang, Jiangsu, China

Paper No. FEDSM2012-72153, pp. 193-202; 10 pages
doi:10.1115/FEDSM2012-72153
From:
  • ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 2: Fora
  • Rio Grande, Puerto Rico, USA, July 8–12, 2012
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4476-2
  • Copyright © 2012 by ASME

abstract

In order to predict cavitation performance of the centrifugal pump, including cavitating structures and vapour volume at the blade suction side, as well as its relationship with the backflow in the impeller eye, a 3D numerical simulation of detailed steady and unsteady cavitating flow was applied to reproduce its inner flow fields at part load conditions (0.5Qd and 0.4Qd). The comparisons of cavitation characteristics of the current centrifugal pump at an on-design point (1.0Qd) and a high flow rate (1.2Qd) were achieved as well. In addition, Frequency analysis of pressure fluctuations at the blade passages and the inlet pipe were also obtained during cavitation for a flow coefficient of 50%. The results further show that successive blade cavitation patterns and the creeping cavitation number dropping appear for a wide range of flow rates when the inlet total pressure decreases from cavitation inception to the breakdown of the centrifugal pump, as is quite different from that when cavitation occurs at 1.0Qd or 1.2Qd. Unbalanced attached cavities on the blade suction side were also observed at 0.5Qd. Meanwhile, the unsteady behaviour of cavities attached to the blade suction side and cavitation number dropping depend on the flow rate and cavitation number. Another significant characteristic of the phenomenon is that all the domain frequencies in blade passages and inlet pipe at part load conditions are 0.048Hz∼48.285Hz, which is typically lower than the shaft rotational frequency of the model centrifugal pump.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In