0

Full Content is available to subscribers

Subscribe/Learn More  >

Integration of On-Machine Measurements in the Force Modeling for Machining of Advanced Nickel-Based Superalloys

[+] Author Affiliations
Andrew Henderson, Cristina Bunget, Thomas Kurfess

Clemson University, Greenville, SC

Paper No. ISFA2012-7247, pp. 561-567; 7 pages
doi:10.1115/ISFA2012-7247
From:
  • ASME/ISCIE 2012 International Symposium on Flexible Automation
  • ASME/ISCIE 2012 International Symposium on Flexible Automation
  • St. Louis, Missouri, USA, June 18–20, 2012
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4511-0
  • Copyright © 2012 by ASME

abstract

Nickel-based superalloys are specially designed for applications where high strength, creep resistance, and oxidation resistance are critical at high temperatures. Many of their applications are the hot gas sections of turbo-machinery (e.g. jet engines and gas turbines). With greater demands on the performance and efficiency of these types of machines, the firing temperatures are reaching higher levels and nickel-based superalloys are being utilized more because of their excellent mechanical qualities at extreme temperatures. However, the properties that make them attractive for these applications present difficult challenges for the manufacture, particularly machining, of the components that are made from these materials. Considering the extreme environment that these components operate in, part quality, in particular surface quality, is paramount. The damage and stresses introduced to the surfaces of these components during manufacture needs to be well understood and controlled in order to ensure that premature component and machine failures do not occur. With improved process models and on-machine measurement capabilities, the in-process cutting forces and temperatures can be better understood and therefore subsurface damage can be better controlled. Since cutting forces and temperatures are direct contributors to subsurface damage, better control of these aspects would then lead to better control of subsurface damage. This paper discusses the use of on-machine touch probes to measure wear on milling tools and using those measurements to update a mechanistic force model for more accurate prediction of the cutting forces incurred during the milling of nickel-based superalloys.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In