0

Full Content is available to subscribers

Subscribe/Learn More  >

Understanding Solar Power Performance Risk and Uncertainty

[+] Author Affiliations
Dave W. Price, Shawn M. Goedeke, Keith Kirkpatrick

McHale & Associates, Inc., Knoxville, TN

Mark W. Lausten

SRA International, Washington, DC

Paper No. ES2012-91459, pp. 615-622; 8 pages
doi:10.1115/ES2012-91459
From:
  • ASME 2012 6th International Conference on Energy Sustainability collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2012 6th International Conference on Energy Sustainability, Parts A and B
  • San Diego, California, USA, July 23–26, 2012
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-4481-6
  • Copyright © 2012 by ASME

abstract

The American Society of Mechanical Engineers (ASME) Performance Test Codes (PTCs) have provided the power industry with the premier source of guidance for conducting and reporting performance tests of their evolving base technologies of power producing plants and supporting components. With an overwhelming push for renewable energy in recent years, ASME PTCs are in the development of similar standards for the testing of concentrating solar thermal technologies based power plants by the formation of a committee to develop “PTC 52, Performance Test Code on Concentrated Solar Plants”, on July 2009.

The U.S. Department of Energy’s (DOE) SunShot Initiative goal is to reduce costs and eliminate market barriers to make large-scale solar energy systems cost-competitive with other forms of energy by the end of the decade. The ASME PTC-52 similarly removes critical barriers hindering deployment and speeds the implementation of concentrating solar power technologies by reducing commercial risk by facilitating performance testing procedures with quantified uncertainty. As with any commercialization of power producing technologies, clearly defining risk and providing methods to mitigate those risks are essential in providing the confidence necessary to secure investment funding. The traditional power market accomplishes this by citation of codes and standards in contracts; specifically ASME PTCs which supply commercially accepted guidelines and technical standards for performance testing to validate the guarantees of the project (Power Output, Heat Rate, Efficiency, etc.). Thus providing the parties to a power project with the tools they need to ensure that the planned project performance was met and the proper transfer of funds are accomplished. To enable solar energy systems to be fully embraced by the power industry, they must have similar codes and standards to mitigate commercial risks associated with contractual acceptance testing. The ASME PTC 52 will provide these standard testing methods to validate Concentrating Solar Power (CSP) systems performance guarantees with confidence.

This paper will present the affect that solar resource variability and measurement accuracies have on concentrating solar field performance uncertainty based on calculation methods like those used for conventional fossil power plants. Measurement practices and methods will be discussed to mitigate that uncertainty. These uncertainty values will be correlated to the levelized cost of electricity (LCOE), and LCOE sensitivities will be derived. The results quantify the impact of resource variability during testing, test duration and sampling rate to annual performance calculation. These uncertainties will be further associated with costs and risks based on typical technology performance guarantees. The paper will also discuss how the development of standard measurements and calculation methods help to produce lower uncertainty associated with the overall plant result, which is already being accomplished by ASME PTCs in conventional power genreation.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In