Full Content is available to subscribers

Subscribe/Learn More  >

A New Heat Engine and its Applications in Concentrating Solar Power (CSP)

[+] Author Affiliations
Yiding Cao

Florida International University (FIU), Miami, FL

Paper No. ES2012-91358, pp. 479-489; 11 pages
  • ASME 2012 6th International Conference on Energy Sustainability collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2012 6th International Conference on Energy Sustainability, Parts A and B
  • San Diego, California, USA, July 23–26, 2012
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-4481-6
  • Copyright © 2012 by ASME


This paper introduces a new heat engine using a gas, such as air or nitrogen, as the working fluid that extracts thermal energy from a heat source as the energy input. The heat engine is to mimic the performance of an air-standard Otto cycle. This is achieved by drastically increasing the time duration of heat acquisition from the heat source in conjunction with the timing of the heat acquisition and a large heat transfer surface area. Performance simulations show that the new heat engine can potentially attain a thermal efficiency above 50% and a power output above 100 kW under open-cycle operation. Additionally, it could drastically reduce engine costs and operate in open cycles, effectively removing the difficulties of dry cooling requirement. The new heat engine may find extensive applications in renewable energy industries, such as concentrating solar power and geothermal energy power. Furthermore, the heat engine may be employed to recover energy from exhaust streams of internal combustion engines, gas turbine engines, and various industrial processes. It may also work as a thermal-to-mechanical conversion system in a nuclear power plant, and function as an external combustion engine in which the heat source is the combustion gas from an external combustion chamber.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In