Full Content is available to subscribers

Subscribe/Learn More  >

Coupled Fluid Flow and Radiation Modeling of a Cylindrical Small Particle Solar Receiver

[+] Author Affiliations
Adam Crocker, Fletcher Miller

San Diego State University, San Diego, CA

Paper No. ES2012-91235, pp. 405-412; 8 pages
  • ASME 2012 6th International Conference on Energy Sustainability collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2012 6th International Conference on Energy Sustainability, Parts A and B
  • San Diego, California, USA, July 23–26, 2012
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-4481-6
  • Copyright © 2012 by ASME


This research expands on previous work by coupling the in-house Monte Carlo Ray Trace (MCRT) radiation model with the more sophisticated fluid dynamics modeling capabilities of ANSYS FLUENT. This allows for the inclusion of more realistic inlet and outlet geometries in the receiver, as well as a turbulence model and much finer grid sizing. Taken together, these features give a more complete picture of the heat transfer, mixing, and temperature profiles within the receiver than previous models. This flow solution is coupled to the MCRT code, by using the in-house MCRT radiation solver to provide the source term of the energy equation. The temperature data output from FLUENT is then fed back into the FORTRAN MCRT code, via a User Defined Function written in C#, and the two models iterate until convergence. The solar input has been modified from the previous model to provide a Gaussian fit to a calculated flux distribution, which is more realistic than a uniform flux. Initial results for a 5 MW solar input agree with the trend identified in Ruther’s work regarding the influence of particle mass loading on heating in the receiver. The maximum outlet temperature reached is 1430K, which is on target for driving a Brayton cycle gas turbine. Cylinder wall temperatures are consistently below those of the gas boundary layer, and significantly below the maximum gas temperature in the receiver cavity.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In