Full Content is available to subscribers

Subscribe/Learn More  >

A Hybrid Measure-Correlate-Predict Method for Wind Resource Assessment

[+] Author Affiliations
Jie Zhang, Souma Chowdhury

Rensselaer Polytechnic Institute, Troy, NY

Achille Messac

Syracuse University, Syracuse, NY

Luciano Castillo

Texas Tech University, Lubbock, TX

Paper No. ES2012-91070, pp. 1361-1370; 10 pages
  • ASME 2012 6th International Conference on Energy Sustainability collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2012 6th International Conference on Energy Sustainability, Parts A and B
  • San Diego, California, USA, July 23–26, 2012
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-4481-6
  • Copyright © 2012 by ASME


This paper develops a hybrid Measure-Correlate-Predict (MCP) strategy to predict the long term wind resource variations at a farm site. The hybrid MCP method uses the recorded data of multiple reference stations to estimate the long term wind condition at the target farm site. The weight of each reference station in the hybrid strategy is determined based on: (i) the distance and (ii) the elevation difference between the target farm site and each reference station. The applicability of the proposed hybrid strategy is investigated using four different MCP methods: (i) linear regression; (ii) variance ratio; (iii) Weibull scale; and (iv) Artificial Neural Networks (ANNs). To implement this method, we use the hourly averaged wind data recorded at six stations in North Dakota between the year 2008 and 2010. The station Pillsbury is selected as the target farm site. The recorded data at the other five stations (Dazey, Galesbury, Hillsboro, Mayville and Prosper) is used as reference station data. Three sets of performance metrics are used to evaluate the hybrid MCP method. The first set of metrics analyze the statistical performance, including the mean wind speed, the wind speed variance, the root mean squared error, and the maximum absolute error. The second set of metrics evaluate the distribution of long term wind speed; to this end, the Weibull distribution and the Multivariate and Multimodal Wind Distribution (MMWD) models are adopted in this paper. The third set of metrics analyze the energy production capacity and the efficiency of the wind farm. The results illustrate that the many-to-one correlation in such a hybrid approach can provide more reliable prediction of the long term onsite wind variations, compared to one-to-one correlations.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In