0

Full Content is available to subscribers

Subscribe/Learn More  >

Characterizing the Influence of Land Area and Nameplate Capacity on the Optimal Wind Farm Performance

[+] Author Affiliations
Souma Chowdhury, Jie Zhang

Rensselaer Polytechnic Institute, Troy, NY

Achille Messac

Syracuse University, Syracuse, NY

Luciano Castillo

Texas Tech University, Lubbock, TX

Paper No. ES2012-91063, pp. 1349-1359; 11 pages
doi:10.1115/ES2012-91063
From:
  • ASME 2012 6th International Conference on Energy Sustainability collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2012 6th International Conference on Energy Sustainability, Parts A and B
  • San Diego, California, USA, July 23–26, 2012
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-4481-6
  • Copyright © 2012 by ASME

abstract

The development of utility-scale wind farms that can produce energy at a cost comparable to that of conventional energy resources presents significant challenges to today’s wind energy industry. The consideration of the combined impact of key design and environmental factors on the performance of a wind farm is a crucial part of the solution to this challenge. The state of the art in optimal wind project planning includes wind farm layout design and more recently turbine selection. The scope of farm layout optimization and the predicted wind project performance however depends on several other critical site-scale factors, which are often not explicitly accounted for in the wind farm planning literature. These factors include: (i) the land area per MW installed (LAMI), and (ii) the nameplate capacity (in MW) of the farm. In this paper, we develop a framework to quantify and analyze the roles of these crucial design factors in optimal wind farm planning. A set of sample values of LAMI and installed farm capacities is first defined. For each sample farm definition, simultaneous optimization of the farm layout and turbine selection is performed to maximize the farm capacity factor (CF). To this end, we apply the recently developed Unrestricted Wind Farm Layout Optimization (UWFLO) method. The CF of the optimized farm is then represented as a function of the nameplate capacity and the LAMI, using response surface methodologies. The variation of the optimized CF with these site-scale factors is investigated for a representative wind site in North Dakota. It was found that, a desirable CF value corresponds to a cutoff “LAMI vs nameplate capacity” curve — the identification of this cutoff curve is critical to the development of an economically viable wind energy project.

Copyright © 2012 by ASME
Topics: Wind farms

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In