Full Content is available to subscribers

Subscribe/Learn More  >

Maximum Power From Fluid Flow: Results From the First and Second Laws of Thermodynamics

[+] Author Affiliations
German Amador Diaz, John Turizo Santos, Elkin Hernandez, Ricardo Vasquez Padilla, Lesme Corredor

Universidad del Norte, Barranquilla, Colombia

Paper No. ES2012-91216, pp. 1243-1252; 10 pages
  • ASME 2012 6th International Conference on Energy Sustainability collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2012 6th International Conference on Energy Sustainability, Parts A and B
  • San Diego, California, USA, July 23–26, 2012
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-4481-6
  • Copyright © 2012 by ASME


The heat transfer principle of power maximization in power plants with heat transfer irreversibilities was cleverly extended by Bejan [1] to fluid flow, by obtaining that the energy conversion efficiency at maximum power is ηmax = 1/2(1 − P2/P1). This result is analog to the efficiency at maximum power for power plants, ηmax = 1 − (T2/T1)1/2 which was deduced by Curzon and Ahlborn [2]. In this paper, the analysis to obtain maximum power output delivered from a piston between two pressure reservoir across linear flow resistance is generalized by considering the piston cylinder friction, by obtaining relations of maximum power output and optimal speed of the piston in terms of first law efficiency. Expressions to relate the power output, cross sectional area of the chamber and first law efficiency, were deduced in order to evaluate the influence of the overall size constraints and fluid regime in the performance of the piston cylinder system. Flow in circular ducts and developed laminar flow between parallel plates, are considered to demonstrate that when two pressure reservoirs oriented in counterflow, with different and arbitrary cross sectional area, must have the same area in order to maximize the power output of the system. These results introduce some modifications to the results obtained by Bejan [1] and Chen [3]. This paper extends the Bejan and Chen’s work by estimating under turbulent regime the lost available work rate associated with the degree of irreversibilities caused by the flow resistances of the system. This analysis is equivalent to evaluate the irreversibilities in an endoirreversible Carnot heat engine model caused by the heat resistance loss between the engine and its surrounding heat reservoirs. This paper concludes with an application to illustrate the practical applications by estimating the lost available work of an actual steady-flow turbine and the layout pipes upstream and downstream of the same device.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In