Full Content is available to subscribers

Subscribe/Learn More  >

Creeping Flow Through Microchannels With Integrated Micro-Pillars

[+] Author Affiliations
Ali Tamayol, Mohsen Akbari, Majid Bahrami

Simon Fraser University, Surrey, BC, Canada

Naga S. K. Gunda, Sushanta K. Mitra

University of Alberta, Edmonton, AB, Canada

Paper No. ICNMM2012-73199, pp. 411-417; 7 pages
  • ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 Fluids Engineering Division Summer Meeting
  • ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels
  • Rio Grande, Puerto Rico, USA, July 8–12, 2012
  • Conference Sponsors: Heat Transfer Division, Fluids Engineering Division
  • ISBN: 978-0-7918-4479-3
  • Copyright © 2012 by ASME


Pressure drop through micro-pillar-integrated mini/microchannels is studied experimentally and analytically. Following our previous studies, the low aspect ratio micropillars embedded in a microchannel are modeled as a porous medium sandwiched between channel walls. The pressure drop is expressed as a function of the salient geometrical parameters such as channel dimension, diameter and spacing between the adjacent cylinders as well as their arrangement. To verify the developed model, several silicon/glass samples with and without integrated pillars are fabricated using the deep reacting ion etching (DRIE) technique. Pressure drop measurements are performed over a range of water flow rates ranging from 0.1 ml/min to 0.5 ml/min. The proposed model is successfully verified with the present experimental data. A parametric study is performed by employing the proposed model, which shows that the flow resistance has a reverse relationship with the micro-pillar diameter and the mini/microchannel porosity. In addition, staggered arrangements have a significantly lower flow resistance than squared arrays of pillars especially in dense structures.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In