Full Content is available to subscribers

Subscribe/Learn More  >

Design of Tree-Shaped Microchannel Networks Submitted to Simultaneous Pressure Driven and Electro-Osmotic Flows

[+] Author Affiliations
Christine Barrot, Stéphane Colin

Université de Toulouse, Toulouse, France

Paper No. ICNMM2012-73104, pp. 113-121; 9 pages
  • ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 Fluids Engineering Division Summer Meeting
  • ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels
  • Rio Grande, Puerto Rico, USA, July 8–12, 2012
  • Conference Sponsors: Heat Transfer Division, Fluids Engineering Division
  • ISBN: 978-0-7918-4479-3
  • Copyright © 2012 by ASME


Microchannel networks can be efficiently used for several applications. For example, they can be the main elements of micro chemical reactors or micro heat exchangers for cooling electronic chips. In such networks, the flow of liquid can be generated either by a pressure difference, by electro-osmosis or by both of them. The design of the network can be optimized in order to deliver a maximum flowrate. In this paper, an analytical study of a pressure driven and electro-osmotic flow in tree-shaped microchannel network is developed. The network is built with a series of rectangular microchannels with high aspect ratio. Each bifurcation connects a parent microchannel to a couple of twin child microchannels. The objective of this work is to determine the geometrical configuration which offers the highest flowrate. The efficiency of the tree-shaped network is compared to the efficiency of a series of parallel microchannels, for the same inlet and outlet values of electric potential and pressure and for the same network volume. Focusing on one bifurcation, the influence of the thickness of the electrical double layer is discussed. The optimal geometric dimensions, such as the ratio of the child over parent microchannel widths and the ratio of the parent over total microchannel lengths, are calculated. The influence of the number of bifurcations is also analyzed and optimal design rules are proposed.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In