Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Specimen-Specific Trabecular Anisotropy on QCT-Based Finite Element Analyses of Lumbar Vertebra

[+] Author Affiliations
Ginu U. Unnikrishnan, Glenn D. Barest, David B. Berry, Amira I. Hussein, Elise F. Morgan

Boston University, Boston, MA

Paper No. SBC2012-80114, pp. 537-538; 2 pages
  • ASME 2012 Summer Bioengineering Conference
  • ASME 2012 Summer Bioengineering Conference, Parts A and B
  • Fajardo, Puerto Rico, USA, June 20–23, 2012
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-4480-9
  • Copyright © 2012 by ASME


Quantitative computed tomography (QCT)-based finite element (FE) models provide better predictions of vertebral strength compared to traditional methods currently used in clinical diagnosis [1]. In QCT-based FE models, the intra- and inter-specimen variations in trabecular anisotropy are often ignored, despite evidence that the biomechanical behavior of the vertebra depends on the architecture of the vertebral trabecular bone [2]. A realistic representation of the specimen-specific, trabecular anisotropy in the FE models of vertebrae would potentially improve predictions of vertebral failure. The overall goal of this study was to evaluate the importance of incorporating specimen-specific, trabecular anisotropy for QCT-based FE predictions of vertebral stiffness and deformation patterns. The major aims of this study were (a) to compare the QCT-based FE results obtained with a constant, anisotropic, material model (the “generic-anisotropic” model) for trabecular bone to those obtained with a specimen-specific, anisotropic, material model and (b) to study the influence of degree of anisotropy (DA) on the FE predictions of vertebral stiffness.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In