Full Content is available to subscribers

Subscribe/Learn More  >

Quantitative Mapping of Local Mechanical Properties of Living Cells at Near-Physiological Conditions Using Multi-Harmonic Atomic Force Microscopy

[+] Author Affiliations
Alexander Cartagena, Wen-Horng Wang, Robert L. Geahlen, Arvind Raman

Purdue University, West Lafayette, IN

Paper No. SBC2012-80837, pp. 523-524; 2 pages
  • ASME 2012 Summer Bioengineering Conference
  • ASME 2012 Summer Bioengineering Conference, Parts A and B
  • Fajardo, Puerto Rico, USA, June 20–23, 2012
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-4480-9
  • Copyright © 2012 by ASME


Measurements of local nanomechanical properties of living cells recently have become extremely important for the cellular biology and biomechanics communities [1]. The measurement of progressive variations in viscoelastic properties of living cells in their native physiological liquid environments can provide significant insight to the mechanistic processes underpinning morphogenesis, mechano-transduction, motility, metastasis, aging, etc. Atomic Force Microscopy (AFM) based biomechanical assays have the unique advantage of resolving/mapping spatially the local nanomechanical properties over the cell surface. However current methods using standard force-volume, force displacement curves [2–3] are very low resolution and low speed making them completely incompatible for biomechanical assays of living cells.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In