0

Full Content is available to subscribers

Subscribe/Learn More  >

Micro Characterization of Mg and Mg Alloy for Biodegradable Orthopedic Implants Application

[+] Author Affiliations
Haibo Gong, Antonios Kontsos, Yoontae Kim, Peter I. Lelkes, Qingwei Zhang, Kavan Hazeli, Jack G. Zhou

Drexel University, Philadelphia, PA

Donggang Yao

Georgia Institute of Technology, Atlanta, GA

Paper No. MSEC2012-7395, pp. 891-895; 5 pages
doi:10.1115/MSEC2012-7395
From:
  • ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing
  • ASME 2012 International Manufacturing Science and Engineering Conference
  • Notre Dame, Indiana, USA, June 4–8, 2012
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5499-0
  • Copyright © 2012 by ASME

abstract

Magnesium as a candidate metallic biomaterial for biodegradable orthopedic implants was evaluated in-vitro in terms of degradation behavior, biocompatibility and mechanical property both in macro- and micro-scale. Micro structure of pure Mg and AZ61 after degradation in both simulated body fluid (SBF) and cell culture environment were analyzed. Different from AZ61, pure Mg degraded at a higher rate and attracted large amount of salt precipitation which formed a layer covering the surface. Much less pitting degradation and salt deposition were observed on both pure Mg and AZ61 in cell culture environment compared to in SBF. After culturing for 7 days, EAhy926 cells growing on AZ61 showed significant higher proliferation rate as of cells growing on pure Mg. Higher proliferation rates indicated that cells grew better on slow-degrading AZ61 than on fast-degrading pure Mg. Cells growing on AZ61 proliferated much better and assembled together to form a consistent tissue-like micro-structure, while cells spread and reached out on the surface of pure Mg, possibly due to low cell density and lack of cellular communication. The elastic modulus and tensile yield strength of magnesium are closer to those of natural bone than other commonly used metallic biomaterials. It was shown that Mg was biodegradable, biocompatible and had appropriate mechanical strength, thus Mg and its alloys showed great potential for deployment in a new generation of biodegradable orthopedic implants.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In