0

Full Content is available to subscribers

Subscribe/Learn More  >

Nanoparticles Embedding Into Metallic Materials by Laser Direct Irradiation

[+] Author Affiliations
Dong Lin, Sergey Suslov, Chang Ye, Yiliang Liao, C. Richard Liu, Gary J. Cheng

Purdue University, West Lafayette, IN

Paper No. MSEC2012-7379, pp. 879-884; 6 pages
doi:10.1115/MSEC2012-7379
From:
  • ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing
  • ASME 2012 International Manufacturing Science and Engineering Conference
  • Notre Dame, Indiana, USA, June 4–8, 2012
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5499-0
  • Copyright © 2012 by ASME

abstract

We report a method to half-embed nanoparticles into metallic materials. Transparent and opaque nanoparticle (laser wavelength 1064 nm) were both successfully half-embedded (partial part of nanoparticles embedded into matrix while other parts still stay above the matrix) into metallic materials. Nanoparticles were coated on sample surface by dip coating before laser irradiation. After laser irradiation of different pulses and laser fluencies, nanoparticles were embedded into metal. The mechanism and process of embedding were investigated.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In