0

Full Content is available to subscribers

Subscribe/Learn More  >

Studying the Temperature Effect During the High-Pressure Phase Transformation of Silicon via Indentations

[+] Author Affiliations
Deepak Ravindra, John Patten, Muralidhar K. Ghantasala

Western Michigan University, Kalamazoo, MI

Paper No. MSEC2012-7323, pp. 521-525; 5 pages
doi:10.1115/MSEC2012-7323
From:
  • ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing
  • ASME 2012 International Manufacturing Science and Engineering Conference
  • Notre Dame, Indiana, USA, June 4–8, 2012
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5499-0
  • Copyright © 2012 by ASME

abstract

Micro-laser assisted machining (μ-LAM) is a novel micro/nano machining technique developed for ductile mode machining of ceramics and semiconductors. Ductile mode material removal is possible in a nominally brittle material due to the high-pressure phase transformation (HPPT) phenomenon during the machining process. This study isolates the pressure and temperature effect in the μ-LAM process. The μ-LAM process is unique whereby the pressure and temperature effect occur concurrently leading to the material removal process. The effect of temperature and thermal softening is studied via indentation tests using a cutting tool. In the precisely controlled indentation tests, laser heating is applied at various stages to determine the phase (i.e. atmospheric Si-I phase or high pressure phases that benefits most from the thermal softening effect. The indentation depths are measured and compared for each condition to identify the enhanced ductility of the nominally brittle material caused by the laser irradiation.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In