0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Modeling of Electron Beam Additive Manufacturing Process: Powder Sintering Effects

[+] Author Affiliations
Ninggang Shen, Kevin Chou

The University of Alabama, Tuscaloosa, AL

Paper No. MSEC2012-7253, pp. 287-295; 9 pages
doi:10.1115/MSEC2012-7253
From:
  • ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing
  • ASME 2012 International Manufacturing Science and Engineering Conference
  • Notre Dame, Indiana, USA, June 4–8, 2012
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5499-0
  • Copyright © 2012 by ASME

abstract

In recently developed Additive Manufacturing (AM) technologies, high-energy sources have been used to fabricate metallic parts, in a layer by layer fashion, by sintering and/or melting metal powders. In particular, Electron Beam Additive Manufacturing (EBAM) utilizes a high-energy electron beam to melt and fuse metal powders to build solid parts. EBAM is one of a few AM technologies capable of making full-density metallic parts and has dramatically extended their applications. Heat transport is the center of the process physics in EBAM, involving a high-intensity, localized moving heat source and rapid self-cooling, and is critically correlated to the part quality and process efficiency.

In this study, a finite element model was developed to simulate the transient heat transfer in a part during EBAM subject to a moving heat source with a Gaussian volumetric distribution. The developed model was first examined against literature data. The model was then used to evaluate the powder porosity and the beam size effects on the high temperature penetration volume (melt pool size). The major findings include the following. (1) For the powder layer case, the melt pool size is larger with a higher maximum temperature compared to a solid layer, indicating the importance of considering powders for the model accuracy. (2) With the increase of the porosity, temperatures are higher in the melt pool and the molten pool sizes increase in the depth, but decrease along the beam moving direction. Furthermore, both the heating and cooling rates are higher for a lower porosity level. (3) A larger electron-beam diameter will reduce the maximum temperature in the melt pool and temperature gradients could be much smaller, giving a lower cooling rate. However, for the tested electron beam-power level, the beam diameter around 0.4 mm could be an adequate choice.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In