0

Full Content is available to subscribers

Subscribe/Learn More  >

Characterization of Joint Quality in Ultrasonic Welding of Battery Tabs

[+] Author Affiliations
S. Shawn Lee, Tae H. Kim, S. Jack Hu

University of Michigan, Ann Arbor, MI

Wayne W. Cai, Jeffrey A. Abell

General Motors R&D Center, Warren, MI

Jingjing Li

University of Hawaii, Honolulu, HI

Paper No. MSEC2012-7410, pp. 249-261; 13 pages
doi:10.1115/MSEC2012-7410
From:
  • ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing
  • ASME 2012 International Manufacturing Science and Engineering Conference
  • Notre Dame, Indiana, USA, June 4–8, 2012
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5499-0
  • Copyright © 2012 by ASME and General Motors

abstract

Manufacturing of lithium-ion battery packs for electric or hybrid electric vehicles requires a significant amount of joining such as welding to meet desired power and capacity needs. However, conventional fusion welding processes such as resistance spot welding and laser welding face difficulties in joining multiple sheets of highly conductive, dissimilar materials with large weld areas. Ultrasonic metal welding overcomes these difficulties by using its inherent advantages derived from its solid-state process characteristics. Although ultrasonic metal welding is well-qualified for battery manufacturing, there is a lack of scientific quality guidelines for implementing ultrasonic welding in volume production. In order to establish such quality guidelines, this paper first identifies a number of critical weld attributes that determine the quality of welds by experimentally characterizing the weld formation over time. Samples of different weld quality were cross-sectioned and characterized with optical microscopy, scanning electronic microscopy (SEM), and hardness measurements in order to identify the relationship between physical weld attributes and weld performance. A novel microstructural classification method for the weld region of an ultrasonic metal weld is introduced to complete the weld quality characterization. The methodology provided in this paper links process parameters to weld performance through physical weld attributes.

Copyright © 2012 by ASME and General Motors

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In