0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigation of Residual Formability and Deformation Localization During Continuous-Bending-Under-Tension

[+] Author Affiliations
Chetan Nikhare, Brad L. Kinsey, Yannis Korkolis

University of New Hampshire, Durham, NH

Paper No. MSEC2012-7302, pp. 139-144; 6 pages
doi:10.1115/MSEC2012-7302
From:
  • ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing
  • ASME 2012 International Manufacturing Science and Engineering Conference
  • Notre Dame, Indiana, USA, June 4–8, 2012
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5499-0
  • Copyright © 2012 by ASME

abstract

A ubiquitous experiment to characterize the formability of sheet metal is the standard uniaxial tension test. Past research [1–3] has shown that if the material is repeatedly bent and unbent during this test (termed Continuous-Bending-under-Tension, or CBT), the percent elongation at failure increases significantly (e.g., from 22% to 290% for an AISI 1006 steel [1]). However, past experiments have been conducted with a fixed stroke of the CBT device, which limits the formability improvements. This phenomenon has also been empirically observed in industry; the failure strains of a sheet which is passed through a drawbead (i.e., that has been bent and unbent three times before entering the die) are higher than those of the original sheet. Thus, the residual formability of the material after a specified number of CBT passes is of interest, to determine if multiple drawbeads would be beneficial in the process. Also of interest is the localization of the deformation during the process as this will provide a better physical understanding of the improved formability observed. In this paper, numerical simulations are presented to assess these effects. Results show that the formability during CBT is dictated by the uniaxial response of the material until the standard elongation at failure is exceeded. This limit can be exceeded by the CBT process. However, failure then occurs as soon as the CBT process is terminated. Also, the deformation is more uniformly distributed over the entire gauge length during the CBT process which leads to the increased elongations observed.

Copyright © 2012 by ASME
Topics: Deformation , Tension

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In