Full Content is available to subscribers

Subscribe/Learn More  >

Discovering Material Recovery Scenarios for Industrial Machinery: A Case-Based Approach

[+] Author Affiliations
William Z. Bernstein, Devarajan Ramanujan, Fu Zhao, Karthik Ramani

Purdue University, West Lafayette, IN

Mikko Koho

Tampere University of Technology, Tampere, Finland

Paper No. MSEC2012-7306, pp. 1097-1104; 8 pages
  • ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing
  • ASME 2012 International Manufacturing Science and Engineering Conference
  • Notre Dame, Indiana, USA, June 4–8, 2012
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5499-0
  • Copyright © 2012 by ASME


Decision-making methodologies for evaluating a product’s end-of-life options have become a significant area of research. Extensive work has been carried out in the area of product recovery, e.g. module-based disassemblability, reverse logistics, remanufacturing, material recyclability, among others. Some of these methods use graphical representations in the form of disassembly trees and/or networks to find feasible solutions with computational approaches, but have not been made applicable to larger, more complex electrohydraulic mechanical systems. The work presented in this paper aims to apply a disassembly assessment technique by comparing a component’s disassembly effort to a reward such as recycling value or energy recovery from recycling. First, the disassembly network is represented by a directed graph where weighted edges represent reward/cost. Next, an implementation of Dijkstra’s algorithm is used to compute the optimal disassembly path that minimizes the sum of the edge weights. Lastly, the optimal disassembly paths for each individual reward are compared to discover the globally optimal disassembly scenario. This method is applied to a real-world case study of an underground mining drill rig with direct contributions from engineers involved in the development of the machine itself. Specific component recovery options are recommended based on the methodology and alternative design practices are suggested to improve product recyclability.

Copyright © 2012 by ASME
Topics: Machinery



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In