Full Content is available to subscribers

Subscribe/Learn More  >

Multi-Scale Friction Modeling for Manufacturing Processes: The Boundary Layer Regime

[+] Author Affiliations
J. Hol, D. K. Karupannasamy

Materials innovation institute (M2i), Delft, the Netherlands

T. Meinders

University of Twente, Enschede, the Netherlands

Paper No. MSEC2012-7298, pp. 1077-1086; 10 pages
  • ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing
  • ASME 2012 International Manufacturing Science and Engineering Conference
  • Notre Dame, Indiana, USA, June 4–8, 2012
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5499-0
  • Copyright © 2012 by ASME


This paper presents a multi-scale friction model for large-scale forming simulations. A friction framework has been developed including the effect of surface changes due to normal loading and straining the underlying bulk material. A fast and efficient translation from micro to macro modeling, based on stochastic methods, is incorporated to reduce the computational effort. Adhesion and ploughing effects have been accounted for to characterize friction conditions on the micro scale. A discrete model has been adopted which accounts for the formation of contact patches ploughing through the contacting material. To simulate metal forming processes a coupling has been made with an implicit Finite Element code. Simulations on a typical metal formed product shows a distribution of friction values. The modest increase in simulation time, compared to a standard Coulomb-based FE simulation, proves the numerical feasibility of the proposed method.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In