Full Content is available to subscribers

Subscribe/Learn More  >

Simulation-Based Energy Efficiency Improvement for Sustainable Manufacturing Systems

[+] Author Affiliations
Lin Li, Zeyi Sun, Haoxiang Yang

University of Illinois at Chicago, Chicago, IL

Fangming Gu

General Motors Global R&D, Warren, MI

Paper No. MSEC2012-7242, pp. 1033-1039; 7 pages
  • ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing
  • ASME 2012 International Manufacturing Science and Engineering Conference
  • Notre Dame, Indiana, USA, June 4–8, 2012
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5499-0
  • Copyright © 2012 by ASME and General Motors


Energy efficiency improvement as well as carbon footprint reduction in the manufacturing industry becomes increasingly important for a green world from the point of sustainability. However, because of the complexity of modern manufacturing systems, most of the existing research efforts in energy efficiency improvement only focus on either single-machine system or process level. Seldom work has been performed to study the potential of energy consumption reduction for typical manufacturing systems with multiple machines and buffers. In this paper, a simulation-based method is proposed to study various strategies for energy efficiency improvement of complex manufacturing systems. This study provides an initial framework to study the real time energy control of multi-machine manufacturing systems, and demonstrates the energy efficiency improvement and energy saving potentials by adjusting the machines’ power level according to their operation states while maintaining the system throughput. Comparison between the results with and without power level adjustment is performed to illustrate the effectiveness of the proposed method.

Copyright © 2012 by ASME and General Motors



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In