0

Full Content is available to subscribers

Subscribe/Learn More  >

Ultrasonic-Vibration Assisted Pelleting for Cellulosic Biofuel Manufacturing: Investigation on Power Consumption With Design of Experiment

[+] Author Affiliations
Qi Zhang, Pengfei Zhang, Z. J. Pei, Graham Pritchett, Meng Zhang, Xiaoxu Song, T. W. Deines

Kansas State University, Manhattan, KS

Paper No. MSEC2012-7212, pp. 1009-1015; 7 pages
doi:10.1115/MSEC2012-7212
From:
  • ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing
  • ASME 2012 International Manufacturing Science and Engineering Conference
  • Notre Dame, Indiana, USA, June 4–8, 2012
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5499-0
  • Copyright © 2012 by ASME

abstract

Cellulosic biomass is abundantly available in the nature. It is an attractive feedstock to make alternative fuels to petroleum-based transportation fuels. Because of low bulk density and irregular shape, raw biomass materials are difficult to handle, transport, and store. Pelleting can increase the density of cellulosic biomass. Pellets can be easily handled, resulting in reducing their transportation and storage costs. Ultrasonic vibration-assisted (UV-A) pelleting is a new pelleting method. Moisture content, particle size, pelleting pressure, and ultrasonic power are four important input parameters affecting pellet quality and sugar yield (proportional to biofuel yield). However, their effects on power consumption in UV-A pelleting have not been adequately investigated. Since power consumption directly affects ethanol manufacturing costs, it is desirable to understand how input parameters affect power consumption. This paper reports an experimental investigation of power consumption in UV-A pelleting. A 24 factorial design is employed to evaluate the effects of four input parameters (moisture content, particle size, pelleting pressure, and ultrasonic power) on power consumption in UV-A pelleting. Results show that three input parameters (moisture content, particle size, and ultrasonic power) significantly affect power consumption. Higher moisture content, lower ultrasonic power, and larger particle size result in higher power consumption. Only one interaction of two parameters is significant, i.e. with the increase of pelleting pressure, power consumption will increase at the high level of particle size while decrease at the low level of particle size.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In