0

Full Content is available to subscribers

Subscribe/Learn More  >

Fuzzy Logic Control of Diesel Combustion Phasing Using Ion Current Signal

[+] Author Affiliations
Tamer Badawy, Nassim Khaled, Naeim Henein

Wayne State University, Detroit, MI

Paper No. ICES2012-81211, pp. 645-658; 14 pages
doi:10.1115/ICES2012-81211
From:
  • ASME 2012 Internal Combustion Engine Division Spring Technical Conference
  • ASME 2012 Internal Combustion Engine Division Spring Technical Conference
  • Torino, Piemonte, Italy, May 6–9, 2012
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-4466-3
  • Copyright © 2012 by ASME

abstract

Diesel engines have to meet stringent emissions standards without penalties in performance and fuel economy. This necessitated the use of elaborate after treatment devices to reduce the tail pipe emissions. In order to decrease the demand on the after treatment devices, there is a need to reduce the emissions in the formation stage during combustion. This requires a precise control of the phasing of the combustion process. Currently, diesel engines are controlled by pre-set open loop schedules that require extensive, time consuming and costly laboratory tests and calibration tasks to meet the production target goals which are stricter than the emission standards. Such goals are set as a safe guard against the deterioration during engine life cycle. This paper presents an incremental fuzzy logic controller that adjusts the combustion phasing as per desired targets to meet production goals over the engine life period. An ion current/ glow plug sensor and its circuit are used to produce a signal indicative of different combustion parameters. Signal conditioning and filtering are applied to improve the quality of ion current.

The algorithm developed in this paper optimizes the ion current feed back to increase its reliability for stable engine control while maintaining fast controller response, and high accuracy. Experiments are carried out on a four cylinder, turbo-charged, 4.5L heavy duty diesel engine equipped with a common rail injection system and an open ECU. The response of the controller is evaluated from experimental data obtained by running the engine under different steady, and transient operating conditions. The results demonstrate the ability of the closed-loop control system in achieving the desired combustion phasing.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In