0

Full Content is available to subscribers

Subscribe/Learn More  >

A Reduced Chemical Kinetic Mechanism for CFD Simulations of High BMEP, Lean-Burn Natural Gas Engines

[+] Author Affiliations
David Martinez-Morett, Luigi Tozzi

Prometheus Applied Technologies, LLC, Fort Collins, CO

Anthony J. Marchese

Colorado State University, Fort Collins, CO

Paper No. ICES2012-81109, pp. 61-71; 11 pages
doi:10.1115/ICES2012-81109
From:
  • ASME 2012 Internal Combustion Engine Division Spring Technical Conference
  • ASME 2012 Internal Combustion Engine Division Spring Technical Conference
  • Torino, Piemonte, Italy, May 6–9, 2012
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-4466-3
  • Copyright © 2012 by ASME

abstract

Recent developments in numerical techniques and computational processing power now permit time-dependent, multi-dimensional computational fluid dynamic (CFD) calculations with reduced chemical kinetic mechanisms (approx. 20 species and 100 reactions). Such computations have the potential to be highly effective tools for designing lean-burn, high BMEP natural gas engines that achieve high fuel efficiency and low emissions. Specifically, these CFD simulations can provide the analytical tools required to design highly optimized natural gas engine components such as pistons, intake ports, precombustion chambers, fuel systems and ignition systems. To accurately model the transient, multi-dimensional chemically reacting flows present in these systems, chemical kinetic mechanisms are needed that accurately reproduce measured combustion data at high pressures and lean conditions, but are of sufficient size to enable reasonable computational times. Presently these CFD models cannot be used as accurate design tools for application in high BMEP lean-burn gas engines because existing detailed and reduced mechanisms fail to accurately reproduce experimental flame speed and ignition delay data for natural gas at high pressure (40 atm and higher) and lean (0.6 equivalence ratio (ϕ) and lower) conditions. Existing methane oxidation mechanisms have typically been validated with experimental conditions at atmospheric and intermediate pressures (1 to 20 atm) and relatively rich stoichiometry. These kinetic mechanisms are not adequate for CFD simulation of natural gas combustion in which elevated pressures and very lean conditions are typical. This paper provides an analysis, based on experimental data, of the laminar flame speed computed from numerous, detailed chemical kinetic mechanisms for methane combustion at pressures and equivalence ratios necessary for accurate high BMEP, lean-burn natural gas engine modeling. A reduced mechanism that was shown previously to best match data at moderately lean and high pressure conditions was updated for the conditions of interest by performing sensitivity analysis using CHEMKIN. The reaction rate constants from the most sensitive reactions were appropriately adjusted in order to obtain a better agreement at high pressure lean conditions. An evaluation of this adjusted mechanism, “MD19”, was performed using Converge CFD software. The results were compared to engine data and a remarkable improvement on combustion performance prediction was obtained with the MD19 mechanism.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In