0

Full Content is available to subscribers

Subscribe/Learn More  >

Individual and Synergistic Effects of Lubricant Additive Components on Diesel Particulate Filter Ash Accumulation and Performance

[+] Author Affiliations
Alexander Sappok, Sean Munnis, Victor W. Wong

Massachusetts Institute of Technology, Cambridge, MA

Paper No. ICES2012-81237, pp. 531-546; 16 pages
doi:10.1115/ICES2012-81237
From:
  • ASME 2012 Internal Combustion Engine Division Spring Technical Conference
  • ASME 2012 Internal Combustion Engine Division Spring Technical Conference
  • Torino, Piemonte, Italy, May 6–9, 2012
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-4466-3
  • Copyright © 2012 by ASME

abstract

The current CJ-4 oil specification places a limit on the oil’s sulfated ash content of 1.0% to reduce the build-up of lubricant-derived ash in the diesel particulate filter (DPF). Lubricant additives, specifically detergents and anti-wear additives, contribute to most of the sulfated ash content in the oil and ash accumulation in the DPF, and hence are studied with increasing interest in the optimization of the combined engine-oil-aftertreatment system. However, characteristics of ash deposits found in the particulate filter, which are affected by a number of parameters, differ markedly from those of the ASTM-method defined sulfated ash. In addition, ash characteristics and effects on DPF performance vary substantially among the different metallic base in the additives, specifically calcium, magnesium, and zinc. Through a series of carefully-controlled tests with specially-formulated lubricant additives, this work quantified the individual and combined effects of the most common detergent and anti-wear additives on the ash properties which directly influence DPF pressure drop.

The results show that different lubricant additive formulations (Ca, Zn, Mg) produce profound differences in DPF pressure drop. It was found that DPF ash is a complex mixture of metals (Ca, Zn, Mg) in the form of sulfates, phosphates, and oxides. These ash compounds each have unique physical properties, which affect DPF pressure drop differently. In particular, ash containing calcium sulfate compounds resulted in an increase in filter pressure drop by over a factor of two, relative to the same amount of ash composed only of zinc phosphate or magnesium oxide compounds, at the same ash loading in the DPF. In addition, synergistic effects due to specific additive combinations were also explored and showed significant differences in ash composition and degree of exhaust flow restriction imposed by the ash resulting from specific additive combinations, as opposed to the individual additives themselves. Results are useful not only for lubricant formulators to design oils for improved aftertreatment system compatibility, but also to understand the practical effects of ash in the DPF in relation to the standardized sulfated ash definition in the lubricant specification.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In