Full Content is available to subscribers

Subscribe/Learn More  >

Impact of Refinery Stream Gasoline Property Variation on Load Sensitivity of the HCCI Combustion

[+] Author Affiliations
Joshua S. Lacey, Sakthish R. Sathasivam, Zoran S. Filipi

University of Michigan, Ann Arbor, MI

Richard J. Peyla, William J. Cannella, Peter A. Fuentes-Afflick

Chevron, Richmond, CA

Paper No. ICES2012-81207, pp. 357-367; 11 pages
  • ASME 2012 Internal Combustion Engine Division Spring Technical Conference
  • ASME 2012 Internal Combustion Engine Division Spring Technical Conference
  • Torino, Piemonte, Italy, May 6–9, 2012
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-4466-3
  • Copyright © 2012 by ASME


The HCCI combustion process is highly reliant upon a favorable in-cylinder thermal environment in an engine, for a given fuel. Commercial fuels can differ considerably in composition and auto-ignition chemistry, hence strategies intended to bring HCCI to market must account for this fuel variability.

To this end, a test matrix consisting of eight gasoline fuels comprised of blends made solely from refinery streams were run in an experimental, single cylinder HCCI engine. All fuels contained 10% ethanol by volume and were representative of a cross-section of fuels one would expect to find at gasoline pumps across the United States. The properties of the fuels were varied according to research octane number (RON), sensitivity (S=RON-MON) and volumetric content of aromatics and olefins.

For each fuel, a sweep of load (mass of fuel injected per cycle) was conducted and the intake air temperature was adjusted in order to keep the crank angle of the 50% mass fraction burned point (CA50) constant. By analyzing the amount of temperature compensation required to maintain constant combustion phasing, it was possible to determine the sensitivity of HCCI to changes in load for various fuels.

In addition, the deviation of fuel properties brought about variations in important engine performance metrics like specific fuel consumption. Though the injected energy content per cycle was matched at the baseline point across the test fuel matrix, thermodynamic differences resulted in a spread of specific fuel consumption for the fuels tested.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In