Full Content is available to subscribers

Subscribe/Learn More  >

Internal Residual vs. Elevated Intake Temperature: How the Method of Charge Preheating Affects the Phasing Limitations of HCCI Combustion

[+] Author Affiliations
Laura Manofsky Olesky, Dennis Assanis, Aristotelis Babajimopoulos

University of Michigan, Ann Arbor, MI

Jiri Vavra

Czech Technical University in Prague, Prague, Czech Republic

Paper No. ICES2012-81127, pp. 307-318; 12 pages
  • ASME 2012 Internal Combustion Engine Division Spring Technical Conference
  • ASME 2012 Internal Combustion Engine Division Spring Technical Conference
  • Torino, Piemonte, Italy, May 6–9, 2012
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-4466-3
  • Copyright © 2012 by ASME


Homogeneous charge compression ignition (HCCI) has the potential to reduce both fuel consumption and NOx emissons compared to normal spark-ignited (SI) combustion. For a relatively low compression ratio engine, high unburned temperatures are needed to initiate HCCI combustion, which is achieved with large amounts of internal residual or by heating the intake charge. The amount of residual in the combustion chamber is controlled by a recompression valve strategy, which relies on negative valve overlap (NVO) to trap residual gases in the cylinder. A single-cylinder research engine with fully-flexible valve actuation is used to explore the limits of HCCI combustion phasing at a constant load of ∼3 bar IMEPg. This is done by performing two individual sweeps of a) internal residual fraction (via NVO) and b) intake air temperature to control combustion phasing. It is found that increasing both variables advances the phasing of HCCI combustion, which leads to increased NOx emissions and a higher ringing intensity. On the other hand, a reduction in these variables leads to greater emissions of CO and HC, as well as a decrease in combustion stability. A direct comparison of the two sweeps suggests that the points with elevated intake temperatures are more prone to ringing as combustion is advanced and less prone to instability and misfire as combustion is retarded. This behavior can be explained by compositional differences (air vs. EGR dilution) which lead to variations in burn rate and peak temperature. As a final study, two additional NVO sweeps are performed while holding intake temperature constant at 30°C and 90°C. Again, it is seen that at higher intake temperatures, combustion is more susceptible to ringing at advanced timings and more resistant to instability/misfire at retarded timings.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In