0

Full Content is available to subscribers

Subscribe/Learn More  >

Development and Analysis of a Controlled Hot Surface Ignition System for Lean Burn Gas Engines

[+] Author Affiliations
Fino Scholl, Denis Neher, Maurice Kettner

University of Applied Sciences Karlsruhe, Karlsruhe, Germany

Philipp Hügel, Heiko Kubach

Karlsruher Institut für Technologie, Karlsruhe, Germany

Markus Klaissle

SenerTec GmbH, Schweinfurt, Germany

Paper No. ICES2012-81059, pp. 239-250; 12 pages
doi:10.1115/ICES2012-81059
From:
  • ASME 2012 Internal Combustion Engine Division Spring Technical Conference
  • ASME 2012 Internal Combustion Engine Division Spring Technical Conference
  • Torino, Piemonte, Italy, May 6–9, 2012
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-4466-3
  • Copyright © 2012 by ASME

abstract

Spark ignition constitutes the most common way of mixture inflammation for gas engines of CHP units (combined heat and power). However, spark plug durability is limited due to spark erosion. High maintenance costs as a result of frequent spark plug replacements are the consequence. Beside the durability aspect, the inflammation of lean mixtures makes high demands on the inflammation process itself. Due to the small reactive mixture volume, the level of air-fuel ratio as well as the efficiency increase is limited. The ignition by means of a hot surface enables an increase of the reactive mixture volume and, as a result, an enhancement of the lean burn limit.

A hot surface ignition (HSI) system was developed for stationary lean burn operation in due consideration of low manufacturing costs and electrical characteristics that allow a reliable control of the ignition timing. The main component of the inflammation element is a pin-shaped glow plug, whose temperature can be regulated by adjusting the electrical power. Due to external influences such as fluctuating ambient pressure and gas quality a control unit is essential for securing an optimal combustion phasing of the engine.

Several designs of hot surface ignition, including passive prechamber and shielded versions, were tested on a single cylinder test bed engine operating with a homogeneous air-petrol mixture. The engine tests were accompanied by 3D flow simulations. The trials showed that the power consumption, and hence the temperature of the hot surface, as well as the flow conditions around the glow plug have a strong influence on the ignition timing. Furthermore, a strong correlation between the mean combustion chamber temperature and combustion phasing became evident. Based on this coherence, it was possible to develop a closed-loop control that adjusts the combustion phasing by controlling the combustion chamber temperature at a stationary operating point.

The shielded inflammation element stood out to be the target-aiming version of hot surface ignition. It is characterised by an accelerated inflammation which allows reducing the cycle-to-cycle variations compared to prechamber spark ignition and, hence, to enhance the lean burn limit. As a result, a significant improvement of the efficiency-NOx trade-off is possible.

The obtained results provide the basis for further trials on a gas engine CHP module operating with natural gas.

Copyright © 2012 by ASME
Topics: Ignition , Gas engines

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In