0

Full Content is available to subscribers

Subscribe/Learn More  >

Current Status of Global WTE

[+] Author Affiliations
Nickolas J. Themelis

Columbia University, New York, NY

Paper No. NAWTEC20-7061, pp. 49-55; 7 pages
doi:10.1115/NAWTEC20-7061
From:
  • 20th Annual North American Waste-to-Energy Conference
  • 20th Annual North American Waste-to-Energy Conference
  • Portland, Maine, USA, April 23–25, 2012
  • Conference Sponsors: Materials and Energy Recovery Division
  • ISBN: 978-0-7918-4483-0
  • Copyright © 2012 by ASME

abstract

This paper is based on data compiled in the course of developing, for InterAmerican Development Bank (IDB), a WTE Guidebook for managers and policymakers in the Latin America and Caribbean region. As part of this work, a list was compiled of nearly all plants in the world that thermally treat nearly 200 million tons of municipal solid wastes (MSW) and produce electricity and heat. An estimated 200 WTE facilities were built, during the first decade of the 21st century, mostly in Europe and Asia. The great majority of these plants use the grate combustion of as-received MSW and produce electricity. The dominance of the grate combustion technology is apparently due to simplicity of operation, high plant availability (>90%), and facility for training personnel at existing plants. Novel gasification processes have been implemented mostly in Japan but a compilation of all Japanese WTE facilities showed that 84% of Japan’s MSW is treated in grate combustion plants. Several small-scale WTE plants (<5 tons/hour) are operating in Europe and Japan and are based both on grate combustion and in implementing WTE projects. This paper is based on the sections of the WTE Guidebook that discuss the current use of WTE technology around the world.

Since the beginning of history, humans have generated solid wastes and disposed them in makeshift waste dumps or set them on fire. After the industrial revolution, near the end of the 18th century, the amount of goods used and then discarded by people increased so much that it was necessary for cities to provide landfills and incinerators for disposing wastes. The management of urban, or municipal, solid wastes (MSW) became problematic since the middle of the 20th century when the consumption of goods, and the corresponding generation of MSW, increased by an order of magnitude. In response, the most advanced countries developed various means and technologies for dealing with solid wastes. These range from reducing wastes by designing products and packaging, to gasification technologies. Lists of several European plants are presented that co-combust medical wastes (average of 1.8% of the total feedstock) and wastewater plant residue (average of 2% of the feedstock).

Copyright © 2012 by ASME
Topics: Waste-to-energy

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In