0

Full Content is available to subscribers

Subscribe/Learn More  >

CFD Analysis of NOx Formation in Waste-to-Energy Systems Using Detailed Chemical Kinetic Modeling

[+] Author Affiliations
Alex Frank, Marco J. Castaldi

Columbia University, New York, NY

Paper No. NAWTEC20-7054, pp. 43-47; 5 pages
doi:10.1115/NAWTEC20-7054
From:
  • 20th Annual North American Waste-to-Energy Conference
  • 20th Annual North American Waste-to-Energy Conference
  • Portland, Maine, USA, April 23–25, 2012
  • Conference Sponsors: Materials and Energy Recovery Division
  • ISBN: 978-0-7918-4483-0
  • Copyright © 2012 by ASME

abstract

This study was undertaken to better understand the governing processes and reaction conditions under which NOx is produced in Waste to Energy (WtE) boilers. A three dimensional CFD model was created and calculated using the GRI 3.0, 50 species, 309 step detailed chemical kinetic model (DCKM) for methane/ethane combustion. Model results for primary NOx emissions and other pollutants agree well with collected data, proving the fidelity of the model. NO was the primary pollutant accounting for approximately 99% of the total NOx emissions. Fuel bound nitrogen was found to be the main source of NO produced in the boiler with thermal and prompt mechanisms having lesser impacts. Three principal intermediates were identified in the formation of NO; NH, HNO, and NCO. The assumption of fuel nitrogen conversion to either NH3 or HCN is an unknown parameter that was shown to have a small impact on NO emissions, indicating that this is an area that should not be explored further in this continuing study. Furthermore, varying the boiler pressure had a small impact on final NO emissions, indicating that this is not a condition that should be considered for plant operation. The next phase of this research will include the development of a reduced DCKM in order to expedite the running of new scenarios for future studies as well as optimization of boiler geometry and combustion mixing to achieve the lowest possible NOx emissions.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In