0

Full Content is available to subscribers

Subscribe/Learn More  >

Electrokinetic Power Generation by Forward Osmosis

[+] Author Affiliations
Kar Cherng Hon, Chun Yang, Seow Chay Low

Nanyang Technological University, Singapore

Paper No. MNHMT2012-75008, pp. 1-6; 6 pages
doi:10.1115/MNHMT2012-75008
From:
  • ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer
  • ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer
  • Atlanta, Georgia, USA, March 3–6, 2012
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 978-0-7918-5477-8
  • Copyright © 2012 by ASME

abstract

In this paper, an innovative direct power generation technique from salinity gradient is proposed and demonstrated. The basis of this novel method encompasses forward osmosis (FO) and electrokinetic (EK) principles. Tapping the concentration difference between seawater and river fresh water, forward osmosis (FO) is utilized to allow for spontaneously transporting water across a semi-permeable membrane. The flow of water is then directed towards array of microchannels in the form of porous medium where power is produced from the electrokinetical streaming potential. Experimentally, NaCl solution and DI water were used to model as seawater and fresh river water, respectively. Both glass and polymer based porous media and commercial flat sheet FO membranes were employed herein. Results show power density could reach the order of 101W/m2. Having features of ease of fabrication, simple configuration and no mechanical moving parts, this method provides a feasible mean to harvest enormous energy from salinity gradient. Thus the proposed technique could contribute greatly to renewable energy and towards sustainable future.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In