Full Content is available to subscribers

Subscribe/Learn More  >

Surface Plasmon Resonance Shifts of a Dispersion of Core-Shell Nanoparticles for Efficient Solar Absorption

[+] Author Affiliations
Wei Lv, Patrick E. Phelan, Lenore Dai, Rajasekaran Swaminathan

Arizona State University, Tempe, AZ

Todd P. Otanicar

Loyola Marymount University, Los Angeles, CA

Robert A. Taylor

The University of New South Wales, Sydney, NSW, Australia

Paper No. MNHMT2012-75090, pp. 191-199; 9 pages
  • ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer
  • ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer
  • Atlanta, Georgia, USA, March 3–6, 2012
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 978-0-7918-5477-8
  • Copyright © 2012 by ASME


Nanoparticles are known to offer a variety of benefits for thermal transport, and of particular relevance here are the vast changes to the radiative properties due to the large extinction cross section at the corresponding surface plasmon resonance wavelength [1, 2]. Recent papers have indicated that dielectric core metallic shell nanoparticles yielded a plasmon resonance tunable from ultraviolet to infrared by changing the ratio of core radius to the total radius [3–6]. We are interested in developing a dispersion of core-shell multifunctional nanoparticles capable of dynamically changing their volume ratio and thus their spectral radiative properties. This work addresses the plasmon resonance tuning ranges for different metallic shell nanoparticles, and explores the solar-weighted efficiencies of corresponding core-shell nanoparticle dispersions. Through our electrostatic model, we achieve a shift in the plasmon resonance peak from a wavelength of about 500 nm to around 1500 nm for Au-coated silica core nanoparticles. Using core-shell nanoparticles dispersions, we show that it is possible to create efficient spectral solar absorption fluids. We also demonstrate that it is possible to design materials for applications which require variable spectral absorption or scattering.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In