0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Surface Integrity on In-Vitro Corrosion of Biodegradable Magnesium-Calcium Orthopedic Implants

[+] Author Affiliations
M. Salahshoor, Y. B. Guo

The University of Alabama, Tuscaloosa, AL

Paper No. BioMed2011-66003, pp. 21-22; 2 pages
doi:10.1115/BioMed2011-66003
From:
  • ASME 2011 6th Frontiers in Biomedical Devices Conference
  • ASME 2011 6th Frontiers in Biomedical Devices Conference and Exhibition
  • Irvine, California, USA, September 26–27, 2011
  • Conference Sponsors: Bioengineering Division
  • Copyright © 2011 by ASME

abstract

Biodegradable magnesium-calcium (MgCa) alloys are capable of gradually dissolving and becoming absorbed in the human body after implantation. The critical issue that hinders the application of MgCa implants is their fast corrosion rate in human body fluids. A promising approach to tackle this issue is to tailor surface integrity of orthopedic implants for tuning the corrosion kinetic. The synergistic dry cutting and burnishing is used in this study to modify surface integrity of MgCa0.8 (wt%) implants for controlled corrosion performance. The effects of cutting speed and rolling force, as key parameters in the synergistic dry cutting-finish burnishing, on the electrochemical responses of the processed surfaces are investigated in the simulated body fluid (SBF). Potentiodynamic polarization curves are measured, and morphology and elemental composition of corroded surfaces are studied utilizing scan electron microscopy (SEM) and energy dispersive spectroscopy (EDS), respectively.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In