Full Content is available to subscribers

Subscribe/Learn More  >

Continuity and Affine Fiber Kinematics in Biaxial Tension of the Supraspinatus Tendon

[+] Author Affiliations
Spencer E. Szczesny, John Peloquin, Sarah Ilkhani-Pour, Daniel H. Cortes, Louis J. Soslowsky, Dawn M. Elliott

University of Pennsylvania, Philadelphia, PA

Jennifer A. Kadlowec

Rowan University, Glassboro, NJ

Paper No. SBC2011-53588, pp. 659-660; 2 pages
  • ASME 2011 Summer Bioengineering Conference
  • ASME 2011 Summer Bioengineering Conference, Parts A and B
  • Farmington, Pennsylvania, USA, June 22–25, 2011
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5458-7
  • Copyright © 2011 by ASME


The human supraspinatus tendon (SST) exhibits strong heterogeneity in fiber alignment and material properties [1,2]. The relationship between fiber angle distribution and material properties has been previously described by a structurally based continuum model [3], which provided new quantitative structure-function relationships to explain the observed SST heterogeneity; however, in some locations and testing directions, the model predictions were not consistent with a continuum assumption [3]. More recent analysis of the change in fiber angle during loading showed that samples with less aligned fibers have less affine kinematics in uniaxial tensile loading [4]. That is, in uniaxial tensile testing, where the transverse edges freely contract, the fiber strain did not match the tissue strain. Because the SST is somewhat transversely constrained by surrounding rotator cuff structures in vivo and has distributed fibers to support multidirectional loading, the freely contracting edges of uniaxial tension may not appropriately constrain the tendon. Therefore, the objective of this study was to evaluate SST stress-strain behavior and affine deformation under biaxial tension. Specifically, if behaving as a continuum, we expected that applying a fixed boundary condition in the transverse direction would produce a higher apparent modulus, a smaller toe-region, and more affine fiber realignment than a free boundary condition.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In