0

Full Content is available to subscribers

Subscribe/Learn More  >

Novel Robotic System for Joint Mechanical Tests Using Velocity-Impedance Control

[+] Author Affiliations
Hiromichi Fujie

Tokyo Metropolitan University, Tokyo, JapanKogakuin University, Tokyo, Japan

Hitoshi Yagi

Kogakuin University, Tokyo, Japan

Paper No. SBC2011-53884, pp. 651-652; 2 pages
doi:10.1115/SBC2011-53884
From:
  • ASME 2011 Summer Bioengineering Conference
  • ASME 2011 Summer Bioengineering Conference, Parts A and B
  • Farmington, Pennsylvania, USA, June 22–25, 2011
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5458-7
  • Copyright © 2011 by ASME

abstract

The first study as regard with the application of robotic technology to the field of joint biomechaics was reported more than 20 years ago1). Since then, a variety of studies have employed commercially available articulated manipulators for the joint biomechanical studies1–4). However, such articulated manipulators are generally poor at stiffness and precision although they were basically designed to achieve high speeds of motion while performing tasks in a large work space. To solve the problem, we have previously developed a robotic system consisting of a custom-made 6-degree of freedom (6-DOF) manipulator and a universal force-moment sensor (UFS)5). Referring to the robotic system, the present study was aimed to develop a novel robotic system of rigid body/structure that allows a high-rate displacement/force control of the knee using a velocity-impedance control.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In