0

Full Content is available to subscribers

Subscribe/Learn More  >

Characterization of a Biomechanical Animal Model for Intact Knee Kinematics and ACL Function Using 6-DOF Robotic Technology

[+] Author Affiliations
Daniel V. Boguszewski, Safa T. Herfat, David L. Butler, Jason T. Shearn

University of Cincinnati, Cincinnati, OH

Christopher T. Wagner

LifeCell Corporation, Branchburg, NJ

Paper No. SBC2011-53658, pp. 645-646; 2 pages
doi:10.1115/SBC2011-53658
From:
  • ASME 2011 Summer Bioengineering Conference
  • ASME 2011 Summer Bioengineering Conference, Parts A and B
  • Farmington, Pennsylvania, USA, June 22–25, 2011
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5458-7
  • Copyright © 2011 by ASME

abstract

Anterior cruciate ligament injury (ACL) affects an estimated 250,000 people annually [1]. Unfortunately, even with ACL reconstruction, the likely prognosis is long-term osteoarthritis (OA) [2]. Many strides have been made in attempting to understand and improve this outcome. The use of robotic technology has provided an avenue for researchers to examine the ACL’s role in knee joint stability in all six anatomical degrees of freedom (DOF) [3]. The overall goal of our lab robotics research is to use this technology to understand ACL function during activities of daily living (ADLs) in hopes of developing a biomechanical animal model which can be used as a preclinical tool to design new repair methods and materials. We have examined three species (ovine, porcine, and human), measuring all forces and moments produced from displacement control motion paths developed for cyclic testing in a robotic system (KUKA; KR210). This information will provide a basis for comparing intact knee biomechanics and ACL function across species. With these robotic inputs, we have performed a series of studies to aid in the development of a biomechanical model of the human knee.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In