Full Content is available to subscribers

Subscribe/Learn More  >

Experimentally Modeling Patient-Specific Fontan Circulations Including Respiration Effects Using a Mock Circulatory System

[+] Author Affiliations
John A. Chiulli, Timothy A. Conover, Sharmad S. Joshi, Richard S. Figliola

Clemson University, Clemson, SC

Tain-Yen Hsia

Great Ormond Street Hospital, London, UK

Paper No. SBC2011-53553, pp. 517-518; 2 pages
  • ASME 2011 Summer Bioengineering Conference
  • ASME 2011 Summer Bioengineering Conference, Parts A and B
  • Farmington, Pennsylvania, USA, June 22–25, 2011
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5458-7
  • Copyright © 2011 by ASME


The Fontan circulation is the result of a series of operations performed on children born with univentricular circulations (1). These congenital heart defects are uniformly fatal if left alone. After birth, an operation is performed to assure that the child receives enough blood flow to the lungs, but not too much in order to avoid pulmonary vascular disease. Once the child reaches 2–4 years of age, the child’s blood vessels are sufficiently large for the Fontan operation. The Fontan operation connects the great systemic veins directly to the pulmonary arteries, bypassing the right ventricle entirely. One method of the Fontan procedure, which is known as the total cavopulmonary connection (TCPC), achieves venous return to the pulmonary circulation without a ventricular power source. The load on the heart is reduced, and these patients can lead a normal life into adulthood; although late complications continue to prevent normal lifespan. One unique feature of the Fontan circulation is reliance of the inferior vena cava (IVC) flow on respiration, and flow reversal in the IVC and hepatic vein during expiratory phase of breathing (2). Hsia et al. (3) suggest that reducing flow reversal in the hepatic vein will improve the outcome of the Fontan operation. The goal of this study is to model experimentally the Fontan circulation for a variety of different patients using an adjustable mock circulatory system, which for the first time includes the influence of respiration.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In