0

Full Content is available to subscribers

Subscribe/Learn More  >

On the Mechanics of Microtubule Filaments

[+] Author Affiliations
Mehrdad Mehrbod, Mohammad R. K. Mofrad

University of California, Berkeley, Berkeley, CA

Paper No. SBC2011-53896, pp. 413-414; 2 pages
doi:10.1115/SBC2011-53896
From:
  • ASME 2011 Summer Bioengineering Conference
  • ASME 2011 Summer Bioengineering Conference, Parts A and B
  • Farmington, Pennsylvania, USA, June 22–25, 2011
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5458-7
  • Copyright © 2011 by ASME

abstract

Quantitative understanding of cell mechanics has challenged biological scientists during the past couple of decades. one of the promising attempts towards mechanical modeling of the cytoskeleton has been the “tensegrity” cytoskeletal model, which simplifies the complex network of cytoskeletal filaments as a structure merely composed of compression-bearing elements (hinge-ended struts) and tensile members (cables). This discrete model can interestingly explain many experimental observations in cell mechanics. However, evidence suggests that the simplicity of this model may undermine the accuracy of its predictions [1–2]. Continuum mechanics predicts that a free, simply-supported beam tends to buckle in the first mode of buckling and that is the case for an in vitro loading of a single microtubule. However, in vivo imaging of microtubules indicates that the buckling mostly occurs in higher modes. This buckling mode switch takes place mostly because of lateral support of microtubules via their connections to actin and intermediate filaments, which themselves are tensile members of the tensegrity cytoskeleton model. Since these loads are exerted throughout the microtubule length, they introduce a considerable amount of microtubule bending behavior. The objective of this paper is to explore the influence of this flexural behavior on the accuracy of the tensegrity model, given the model’s underlying assumption that “every single member bears solely either tensile or compressive behavior”.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In