Full Content is available to subscribers

Subscribe/Learn More  >

Probing Dynamic Responses of the Extracellular Matrix to Coupled Mechanical and Chemical Inputs

[+] Author Affiliations
Robert L. Steward, Jr., Chao-Min Cheng, Philip R. LeDuc

Carnegie Mellon University, Pittsburgh, PA

Paper No. SBC2010-19206, pp. 965-966; 2 pages
  • ASME 2010 Summer Bioengineering Conference
  • ASME 2010 Summer Bioengineering Conference, Parts A and B
  • Naples, Florida, USA, June 16–19, 2010
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-4403-8
  • Copyright © 2010 by ASME


The extracellular matrix (ECM) is an important cellular component that provides structural support for cells that form the various connective tissues in the body and has been linked to various important cellular processes. One major, ubiquitously expressed ECM protein, fibronectin (FN) has been well documented to play an important role in the ECM, but most studies have investigated FN and its assembly and structural organization mainly through chemical stimulation. The ECM though likely experiences multiple modes of stimulation such as mechanical and chemical inputs. Since cells and the ECM may experience mechanical and chemical stimulation, we examined how NIH 3T3 fibroblasts altered their ECM in response to applied mechanical and chemical stimulation. Mechanical stimulation revealed an increase in FN matrix formation and secretion as reflected by immunofluorescence as well as FN localization around the cell periphery. Coupling of mechanical stimulation with chemical stimulation via inhibition of Rho activity revealed the same behavior as cells exposed purely to mechanical stimulation. This study is among the first to show the effect of coupled modes of stimulation on the ECM and show a purely mechanics-induced stimulation of ECM formation. These results have implications in a variety of fields including mechanotransduction, biophysics and bioengineering.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In