Full Content is available to subscribers

Subscribe/Learn More  >

Computation of Blast-Induced Traumatic Brain Injury

[+] Author Affiliations
M. S. Chafi, G. Karami, M. Ziejewski

North Dakota State University, Fargo, ND

Paper No. SBC2009-204882, pp. 949-950; 2 pages
  • ASME 2009 Summer Bioengineering Conference
  • ASME 2009 Summer Bioengineering Conference, Parts A and B
  • Lake Tahoe, California, USA, June 17–21, 2009
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-4891-3
  • Copyright © 2009 by ASME


In this paper, an integrated numerical approach is introduced to determine the human brain responses when the head is exposed to blast explosions. The procedure is based on a 3D non-linear finite element method (FEM) that implements a simultaneous conduction of explosive detonation, shock wave propagation, and blast-brain interaction of the confronting human head. Due to the fact that there is no reported experimental data on blast-head interactions, several important checkpoints should be made before trusting the brain responses resulting from the blast modeling. These checkpoints include; a) a validated human head FEM subjected to impact loading; b) a validated air-free blast propagation model; and c) the verified blast waves-solid interactions. The simulations presented in this paper satisfy the above-mentioned requirements and checkpoints. The head model employed here has been validated again impact loadings. In this respect, Chafi et al. [1] have examined the head model against the brain intracranial pressure, and brain’s strains under different impact loadings of cadaveric experimental tests of Hardy et al. [2]. In another report, Chafi et al. [3] has examined the air-blast and blast-object simulations using Arbitrary Lagrangian Eulerian (ALE) multi-material and Fluid-Solid Interaction (FSI) formulations. The predicted results of blast propagation matched very well with those of experimental data proving that this computational solid-fluid algorithm is able to accurately predict the blast wave propagation in the medium and the response of the structure to blast loading. Various aspects of blast wave propagations in air as well as when barriers such as solid walls are encountered have been studied. With the head model included, different scenarios have been assumed to capture an appropriate picture of the brain response at a constant stand-off distance of nearly 80cm (2.62 feet) from the explosion core. The impact of brain response due to severity of the blast under different amounts of the explosive material, TNT (0.0838, 0.205, and 0.5lb) is examined. The accuracy of the modeling can provide the information to design protection facilities for human head for the hostile environments.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In