0

Full Content is available to subscribers

Subscribe/Learn More  >

Strength Retention of a New Microbial Cellulose Scaffold and Existing Collagen-Based Scaffolds After In Vivo Implantation in a Rabbit Model

[+] Author Affiliations
Michael I. Dishowitz, Miltiadis H. Zgonis, Louis J. Soslowsky

University of Pennsylvania, Philadelphia, PA

Jeremy J. Harris, Constance Ace

Xylos Corporation, Langhorne, PA

Paper No. SBC2009-203619, pp. 777-778; 2 pages
doi:10.1115/SBC2009-203619
From:
  • ASME 2009 Summer Bioengineering Conference
  • ASME 2009 Summer Bioengineering Conference, Parts A and B
  • Lake Tahoe, California, USA, June 17–21, 2009
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-4891-3
  • Copyright © 2009 by ASME

abstract

Rotator cuff tendon tears often require large tensions for repair [1] and these tensions are associated with poor outcomes including rerupture [2]. To address this, repairs are often augmented with collagen-based scaffolds. Microbial cellulose, produced by A. xylinum as a laminar non-woven matrix, is another candidate for repair augmentation [3]. An ideal augmentation scaffold would shield the repair site from damaging loads as they change throughout the healing process. Although the initial mechanical properties of clinically used scaffolds have been well characterized [4–6], their mechanical behavior following implantation is not known. As a result, the role of these scaffolds throughout the healing process remains unknown. Therefore, the objective of this study is to characterize the mechanical behavior of existing collagen-based scaffolds and a new, microbial cellulose scaffold over time using an in vivo model. We hypothesize that: 1) collagen-based scaffolds will show decreased stiffness (1a) and suture pullout loads (1b) over time when compared to initial values while the microbial cellulose scaffold will not; and 2) the collagen-based scaffolds will have decreased stiffness (2a) and suture pullout loads (2b) when compared to the new, microbial cellulose scaffold at all timepoints.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In